Fabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles

Authors

  • A.R. Moghadassi Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
  • E. Bagheripour Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
  • M. Nemati Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
  • S.M. Hosseini Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
Abstract:

In this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. Polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. The effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. Scanning optical microscopy (SOM) and scanning electron microscopy analysis (SEM), water contact angle, NaCl/Na2SO4 salt rejection, water flux and tensile strength measurements were also carried out in membrane characterization. SOM images showed relatively uniform particle distribution and surface for the prepared membranes. Moreover, SEM images showed that the macro-voids’ size was enhanced in the membrane sub-layer with an increase of additive concentration. Results showed that increasing iron-nickel oxide nanoparticles from 0 to 0.1 wt.% in the membrane matrix caused a decrease in contact angle from 63 to 43° and again increased to 56° by increasing the particles concentration to 1 wt.%. The membrane water flux was enhanced sharply with an increase of nanoparticle concentration up to 0.01 wt.% in the membrane matrix and then decreased slightly at higher additive contents. Salt rejection was generally improved with an increase of nanoparticle concentration. Membrane mechanical strength was initially declined by using iron-nickel oxide nanoparticles up to 0.1 wt.% in the membrane matrix and then increased at higher additive contents. The nanocomposite membranes showed more appropriate antifouling capacity compared to a pristine PES membrane. The effect of feed concentration on membrane salt rejection and water flux was also studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

fabrication and characterization of novel mixed matrix polyethersulfone nanofiltration membrane modified by iron-nickel oxide nanoparticles

in this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. the effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. scanning optical ...

full text

Fabrication and Characterization of Novel Mixed Matrix Polyethersulfone Based Nanofiltration Membrane Modified by Ilmenite (TECHNICAL NOTE)

This study is focused on fabrication and characterization of mixed matrix poly ether sulfone based nanofiltration membrane by phase inversion method. The effect of different amounts of Ilmenite (FeTiO3) particles as inorganic filler additive in the casting solution on physic-chemical characteristics of membranes was studied. Scanning electron microscopy, surface analysis, water content, contact...

full text

Fabrication and Characterization of PES Based Nanofiltration Membrane Modified by Zeolite Nanoparticles for Water Desalination

In the present study, mixed matrix PES/zeolite nanoparticles nanofiltration membranes were prepared via the solution casting technique. The effect of zeolite concentration on the PES membrane performance and its properties was studied. Cross-sectional scanning electron microscope (SEM) observations showed that the porosity in the membrane sub-layer was increased with addition of zeolite into th...

full text

Preparation and Characterization of an Antifouling Polyethersulfone Nanofiltration Membrane Blended with Graphene Oxide/Ag Nanoparticles

Graphene oxide/Ag nanoparticles (Ag/GO) was prepared and employed to synthesize antifouling polyethersulfone (PES) mixed matrix membranes. The performance of the membranes was evaluated in terms of flux, hydrophilicity and anti-biofouling properties. With increment of the Ag/GO from 0 to 0.1 wt.%, the pure water flux increased from 24.7 up to 54.1 kg/m2 h. The flux recovery ratio (FRR) of the m...

full text

Incorporated Poly Acrylic Acid-co-Fe3O4 Nanoparticles Mixed Matrix Polyethersulfone based Nanofiltration Membrane in Desalination Process

Polyethersulfone (PES) based nanocomposite nanofiltration membrane was prepared by immersion precipitation method and casting solution technique using  poly (acrylic acid) grafted-iron oxide nanoparticles (Fe3O4) as hydrophilic filler additives. For this purpose, iron oxide nanoparticles were modified by in situ polymerization of acrylic acid in aqueous solution by potassium persulfate as initi...

full text

Fabrication and Electrochemical Characterization of Polyvinyl Chloride Based/Chitosan-co- Iron Nickel Oxide Nanoparticles Composite Heterogeneous Cation Exchange Membranes

In this research, polyvinylchloride based composite heterogeneous cation exchange membranes were prepared by the solution casting technique. Chitosan-co-iron nickel oxide nanoparticles were utilized as membrane surface modifier to improve the membranes electrochemical properties. The effect of additive nanoparticle concentration in the modifier solution on the properties of composite membranes ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  14- 19

publication date 2016-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023